Automatic Recognition and Generation of Affective Movements
نویسنده
چکیده
Body movements are an important non-verbal communication medium through which affective states of the demonstrator can be discerned. For machines, the capability to recognize affective expressions of their users and generate appropriate actuated responses with recognizable affective content has the potential to improve their life-like attributes and to create an engaging, entertaining, and empathic human-machine interaction. This thesis develops approaches to systematically identify movement features most salient to affective expressions and to exploit these features to design computational models for automatic recognition and generation of affective movements. The proposed approaches enable 1) identifying which features of movement convey affective expressions, 2) the automatic recognition of affective expressions from movements, 3) understanding the impact of kinematic embodiment on the perception of affective movements, and 4) adapting pre-defined motion paths in order to “overlay” specific affective content. Statistical learning and stochastic modeling approaches are leveraged, extended, and adapted to derive a concise representation of the movements that isolates movement features salient to affective expressions and enables efficient and accurate affective movement recognition and generation. In particular, the thesis presents two new approaches to fixedlength affective movement representation based on 1) functional feature transformation, and 2) stochastic feature transformation (Fisher scores). The resulting representations are then exploited for recognition of affective expressions in movements and for salient movement feature identification. For functional representation, the thesis adapts dimensionality reduction techniques (namely, principal component analysis (PCA), Fisher discriminant analysis, Isomap) for functional datasets and applies the resulting reduction techniques to extract a minimal set of features along which affect-specific movements are best separable. Furthermore, the centroids of affect-specific clusters of movements in the resulting functional PCA subspace along with the inverse mapping of functional PCA are used to generate prototypical movements for each affective expression. The functional discriminative modeling is however limited to cases where affect-specific movements also have similar kinematic trajectories and does not address the interpersonal and stochastic variations inherent to bodily expression of affect. To account for these variations, the thesis presents a novel affective movement representation in terms of stochastically-transformed features referred to as Fisher scores. The Fisher scores are derived from affect-specific hidden Markov model encoding of the movements and exploited to discriminate between different affective expressions using a support vector machine (SVM) classification. Furthermore, the thesis presents a new approach for systematic identification of a minimal set of movement features most salient to discriminating between different
منابع مشابه
بازشناسی خودکار حالت عاطفی مبتنی بر تغییرات فیزیولوژیک
Recently, automatic affective state recognition has been noteworthy for improving Human Computer Interaction (HCI), clinical researches and other various applications. Little attention has been paid so far to physiological signals for affective state recognition compared to audio-visual methods. Different affective states stimulate the Autonomic Nervous System (ANS) and lead to changes in physi...
متن کاملUW CENTER FOR PATTERN ANALYSIS AND MACHINE INTELLIGENCE GRADUATE SEMINAR SERIES Perception and Generation of Affective Movements
Humans communicate affect through a variety of channels, such as facial expressions, voice and body movement, and are adept at estimating the affective states of others. Body movements are important observable features of underlying affective states. The psychology literature reports on the critical role of movement cues in conveying life-like affective expressions for both anthropomorphic and ...
متن کاملAutomatic Recognition of Affective Body Movement in a Video Game Scenario
This study aims at recognizing the affective states of players from non-acted, non-repeated body movements in the context of a video game scenario. A motion capture system was used to collect the movements of the participants while playing a Nintendo Wii tennis game. Then, a combination of body movement features along with a machine learning technique was used in order to automatically recogniz...
متن کاملCombination of Empirical Mode Decomposition Components of HRV Signals for Discriminating Emotional States
Introduction Automatic human emotion recognition is one of the most interesting topics in the field of affective computing. However, development of a reliable approach with a reasonable recognition rate is a challenging task. The main objective of the present study was to propose a robust method for discrimination of emotional responses thorough examination of heart rate variability (HRV). In t...
متن کاملAutomatic Design of Persian Typefaces
In this paper
, a fast method for automatic generation and scientific design of Persian letters is proposed. Scientific typeface design is an approach in which fonts are described by mathematical curves with well-defined parameters, where these parameters can be automatically tuned. METAFONT is a language suitable for the type of design used in this work. This language is particularly useful...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014